Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 3,4,5-Trihydroxybenzohydrazidium perchlorate-3,4,5-trihydroxybenzohydrazide-water (1/1/1)

#### Abeer A. Alhadi, Hamid Khaledi\* and Hapipah Mohd Ali

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 13 July 2011; accepted 29 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.049; wR factor = 0.109; data-to-parameter ratio = 10.1.

The crystal studied of the title compound,  $C_7H_9N_2O_4^+ \cdot ClO_4^- \cdots C_7H_8N_2O_4 \cdot H_2O$ , was found to be a racemic twin with a 0.72 (18):0.28 (18) domain ratio. The hydrazidium group is close to planar, with an r.m.s deviation of 0.105 Å; the hydrazide group deviates more from planarity, with an r.m.s deviation of 0.174 Å. In the crystal, the hydrazidium cation, hydrazide molecule, perchlorate anions and water molecules are linked through  $O-H\cdots O$ ,  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds into a three-dimensional supramolecular network. In addition, the benzene rings of the hydrazidium and hydrazide units are connected *via*  $\pi$ - $\pi$  interactions into infinite chains along the *c* axis; the centroid–centroid distances are 3.486 (3) and 3.559 (3) Å.

#### **Related literature**

For the crystal structure of trimethoxybenzohydrazidium chloride, see: Saeed *et al.* (2008) and of 3,4,5-trimethoxybenzohydrazide hemihydrate, see: Zareef *et al.* (2006).



#### **Experimental**

#### 

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.957, T_{max} = 0.991
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$   $wR(F^2) = 0.109$  S = 1.033393 reflections 335 parameters 22 restraints 14383 measured reflections 3393 independent reflections 2653 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.092$ 

Table 1Hydrogen-bond geometry (Å,  $^{\circ}$ ).

| $D - H \cdot \cdot \cdot A$           | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------|----------|-------------------------|--------------|---------------------------|
| $N1-H1A\cdotsO12^{i}$                 | 0.88 (2) | 1.95 (3)                | 2.769 (5)    | 155 (4)                   |
| $N1 - H1B \cdot \cdot \cdot O11^{ii}$ | 0.89 (2) | 1.99 (3)                | 2.835 (5)    | 159 (4)                   |
| $N2-H2N\cdots O13^{iii}$              | 0.86(2)  | 1.92 (2)                | 2.783 (4)    | 175 (4)                   |
| $O2-H2O\cdots O10^{iii}$              | 0.83 (2) | 1.96 (2)                | 2.782 (4)    | 173 (5)                   |
| $N3-H3A\cdots O3^{iv}$                | 0.89 (2) | 2.10 (2)                | 2.958 (5)    | 161 (4)                   |
| N3−H3B···O1                           | 0.91(2)  | 1.90(2)                 | 2.788 (5)    | 163 (4)                   |
| N3-H3C···O9 <sup>ii</sup>             | 0.92(2)  | 1.95 (2)                | 2.833 (5)    | 160 (4)                   |
| O3−H3O···O4                           | 0.82 (2) | 2.39 (5)                | 2.732 (4)    | 106 (4)                   |
| $O3-H3O\cdots O10^{v}$                | 0.82(2)  | 1.96 (3)                | 2.720 (4)    | 153 (4)                   |
| $N4 - H4N \cdots O2^{iv}$             | 0.87 (2) | 2.01 (3)                | 2.811 (5)    | 154 (4)                   |
| O4−H4O···O9                           | 0.84(2)  | 2.02 (2)                | 2.854 (4)    | 171 (5)                   |
| $O6-H6O\cdots O12^{vi}$               | 0.82(2)  | 1.81 (3)                | 2.598 (4)    | 160 (5)                   |
| O7−H7O···O6                           | 0.84(2)  | 2.15 (4)                | 2.667 (4)    | 119 (4)                   |
| $O7-H7O\cdots O4^{vi}$                | 0.84(2)  | 2.31 (3)                | 3.085 (4)    | 154 (4)                   |
| O8−H8O···O11                          | 0.83 (2) | 1.99 (2)                | 2.794 (4)    | 164 (5)                   |
| O8−H8O···O13                          | 0.83 (2) | 2.34 (4)                | 2.892 (4)    | 125 (4)                   |
| O9−H9A…O12                            | 0.85 (2) | 2.14 (3)                | 2.875 (4)    | 145 (5)                   |
| $O9-H9A\cdotsO1^{ii}$                 | 0.85 (2) | 2.51 (5)                | 3.036 (4)    | 121 (4)                   |
| O9−H9B···O5                           | 0.83 (2) | 2.03 (3)                | 2.794 (4)    | 152 (5)                   |
| C3-H3···O13 <sup>iii</sup>            | 0.95     | 2.39                    | 3.079 (5)    | 129                       |
| C7-H7···O9                            | 0.95     | 2.57                    | 3.291 (5)    | 133                       |

Symmetry codes: (i) -x + 1, -y + 1,  $z - \frac{1}{2}$ ; (ii) -x + 1, -y + 1,  $z + \frac{1}{2}$ ; (iii) x, y + 1, z; (iv)  $x - \frac{1}{2}$ ,  $-y + \frac{3}{2}$ , z; (v)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ ; (vi)  $x - \frac{1}{2}$ ,  $-y + \frac{1}{2}$ , z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors thank the University of Malaya for funding this study (FRGS grant FP004/2010B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2194).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Saeed, A., Mumtaz, A., Rafique, H., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E**64**, o2336.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Zareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E**62**, o3259–o3261.

Acta Cryst. (2011). E67, o2229-o2230 [doi:10.1107/S1600536811030595]

### 3,4,5-Trihydroxybenzohydrazidium perchlorate-3,4,5-trihydroxybenzohydrazide-water (1/1/1)

#### A. A. Alhadi, H. Khaledi and H. Mohd Ali

#### Comment

The title compound was obtained unexpectedly during an attempt to prepare a nickel(II) complex of 3,4,5–trihydroxybenzohydrazide. The structure contains a hydrazidium cation and a neutral hydrazide molecule. The cationic hydrazidium moiety is almost planar, within which the aromatic ring, C9—C14, and the N3/N4/C8/O5 plane make a dihedral angle of 12.5 (2)° which is smaller than the corresponding value [30.52 (3)°] in 3,4,5–trimethoxybenzohydrazidium chloride (Saeed *et al.*, 2008). The dihedral angle between the aromatic ring of the neutral hydrazide, C2—C7, and the N1/N2/C1/O1 plane is 19.0 (3)° which is larger than what was reported for 3,4,5–trimethoxybenzohydrazide hemihydrate [9.27 (10)°, Zareef *et al.*, 2006].

The crystal structure contains perchlorate anions and water molecules which are bonded to the hydrazidium and hydrazide moieties *via* O—H···O, N—H···O and C—H···O interactions (Table 1) to form a three–dimensional supramolecual rnetwork. The crystal packing (Fig. 2) is consolidated by  $\pi$ – $\pi$  interactions between the benzene rings of the hydrazidium and hydrazide moieties, with a Cg1··· $Cg2^{i}$  and a Cg1··· $Cg2^{ii}$  distances of 3.486 (3) and 3.559 (3) Å, respectively (Cg1 and Cg2 are the centroids of the C9–C15 benzene ring and the C2–C7 benzene ring, respectively).

#### **Experimental**

A solution of nickel(II) perchlorate monohydrate (0.585 g, 1.6 mole) in ethanol (50 ml) was added slowly to an ethanolic solution of gallic hydrazide (0.60 g, 3.3 mmol) in the same solvent. A few drops of triethylamine was added and the mixture was refluxed for 5 h. The precipitate was filtered and recrystallized from DMSO to give the colorless crystals of the title compound.

#### Refinement

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.95 Å. The N- and O-bound H atoms were located in a difference Fourier map, and refined with distance restraints of O—H = 0.84 (2) Å, N2—H = 0.88 (2) Å, N1—H and N3—H = 0.91 (2) Å. For all H atoms,  $U_{iso}(H)$  was set to 1.2(1.5 for hydroxyl) $U_{eq}$ (carrier atom). The displacement ellipsoids of C6 were restrained using command ISOR (0.01). The structure was a racemic twin and the twin parameter refined to 0.28 (11). An absolute structure was established using anomalous dispersion effects; 1545 Friedel pairs were not merged. The most disagreeable reflections with delta(F2)/e.s.d. > 10 were omitted (3 reflections).

**Figures** 



Fig. 1. Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. A view of the  $\pi$ .. $\pi$  interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x + 1, -y + 1, z - 1/2; (ii) -x + 1, -y + 1, z + 1/2.]

#### (3,4,5-Trihydroxybenzamido)ammonium perchlorate-3,4,5-trihydroxybenzohydrazide-water (1/1/1)

#### Crystal data

| $C_7H_9N_2O_4^+ \cdot ClO_4^- \cdot C_7H_8N_2O_4 \cdot H_2O$ | F(000) = 1008                                  |
|--------------------------------------------------------------|------------------------------------------------|
| $M_r = 486.78$                                               | $D_{\rm x} = 1.774 \ {\rm Mg \ m^{-3}}$        |
| Orthorhombic, <i>Pna</i> 2 <sub>1</sub>                      | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2c -2n                                        | Cell parameters from 1227 reflections          |
| <i>a</i> = 20.1213 (7) Å                                     | $\theta = 3.2 - 27.0^{\circ}$                  |
| b = 12.9178 (4) Å                                            | $\mu = 0.30 \text{ mm}^{-1}$                   |
| c = 7.0122 (2) Å                                             | T = 100  K                                     |
| $V = 1822.63 (10) \text{ Å}^3$                               | Needle, colorless                              |
| Z = 4                                                        | $0.15\times0.04\times0.03~mm$                  |
|                                                              |                                                |
| Data collection                                              |                                                |
| Bruker APEXII CCD<br>diffractometer                          | 3393 independent reflections                   |

2653 reflections with  $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube  $R_{\rm int} = 0.092$  $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ Absorption correction: multi-scan  $h = -24 \rightarrow 24$  $k = -15 \rightarrow 15$  $l = -8 \rightarrow 8$ 

#### Refinement

graphite

 $\phi$  and  $\omega$  scans

(SADABS; Sheldrick, 1996)  $T_{\min} = 0.957, T_{\max} = 0.991$ 

14383 measured reflections

Refinement on  $F^2$ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and  $R[F^2 > 2\sigma(F^2)] = 0.049$ constrained refinement  $w = 1/[\sigma^2(F_0^2) + (0.0535P)^2]$  $wR(F^2) = 0.109$ where  $P = (F_0^2 + 2F_c^2)/3$ 

| <i>S</i> = 1.03                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
|----------------------------------------------------------------|-------------------------------------------------------|
| 3393 reflections                                               | $\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$ |
| 335 parameters                                                 | $\Delta \rho_{min} = -0.53 \text{ e} \text{ Å}^{-3}$  |
| 22 restraints                                                  | Absolute structure: Flack (1983), 1545 Friedel pairs  |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.28 (11)                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У          | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|------------|------------|---------------------------|
| 01  | 0.47204 (14) | 0.7004 (2) | 0.1226 (4) | 0.0100 (7)                |
| 02  | 0.74400 (13) | 0.8918 (2) | 0.1487 (5) | 0.0141 (7)                |
| H2O | 0.722 (2)    | 0.945 (2)  | 0.133 (8)  | 0.021*                    |
| 03  | 0.78618 (15) | 0.7058 (2) | 0.2858 (4) | 0.0107 (7)                |
| НЗО | 0.795 (2)    | 0.652 (2)  | 0.343 (6)  | 0.016*                    |
| O4  | 0.70017 (14) | 0.5426 (2) | 0.3081 (4) | 0.0121 (7)                |
| H4O | 0.6714 (18)  | 0.496 (3)  | 0.301 (7)  | 0.018*                    |
| N1  | 0.42795 (17) | 0.8931 (3) | 0.1273 (5) | 0.0095 (8)                |
| H1A | 0.4015 (19)  | 0.856 (3)  | 0.054 (5)  | 0.011*                    |
| H1B | 0.416 (2)    | 0.880 (3)  | 0.247 (3)  | 0.011*                    |
| N2  | 0.49692 (17) | 0.8702 (3) | 0.1213 (6) | 0.0119 (9)                |
| H2N | 0.5225 (18)  | 0.921 (2)  | 0.155 (7)  | 0.014*                    |
| C1  | 0.5142 (2)   | 0.7687 (3) | 0.1322 (6) | 0.0104 (9)                |
| C2  | 0.58680 (19) | 0.7498 (3) | 0.1540 (7) | 0.0075 (8)                |
| C3  | 0.6324 (2)   | 0.8282 (3) | 0.1261 (6) | 0.0107 (9)                |
| Н3  | 0.6182       | 0.8929     | 0.0760     | 0.013*                    |
| C4  | 0.6987 (2)   | 0.8133 (3) | 0.1707 (6) | 0.0089 (9)                |
| C5  | 0.7199 (2)   | 0.7175 (3) | 0.2372 (6) | 0.0097 (9)                |
| C6  | 0.6750 (2)   | 0.6371 (3) | 0.2535 (6) | 0.0097 (9)                |
| C7  | 0.6085 (2)   | 0.6524 (3) | 0.2159 (6) | 0.0101 (9)                |
| H7  | 0.5776       | 0.5974     | 0.2317     | 0.012*                    |
| O5  | 0.46214 (14) | 0.4747 (2) | 0.3255 (4) | 0.0143 (7)                |
| O6  | 0.23020 (14) | 0.1848 (2) | 0.2092 (4) | 0.0150 (8)                |
| H6O | 0.2019 (19)  | 0.218 (3)  | 0.268 (6)  | 0.022*                    |
| O7  | 0.32391 (15) | 0.0490 (2) | 0.1104 (5) | 0.0153 (7)                |
| H7O | 0.2861 (14)  | 0.045 (4)  | 0.162 (7)  | 0.023*                    |
|     |              |            |            |                           |

| 0.0634 (5)   | 0.0140 (7)                                                                                                                                                                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.071 (7)    | 0.021*                                                                                                                                                                                                                             |
| 0.3853 (5)   | 0.0119 (8)                                                                                                                                                                                                                         |
| 0.360 (6)    | 0.014*                                                                                                                                                                                                                             |
| 0.314 (6)    | 0.014*                                                                                                                                                                                                                             |
| 0.509 (3)    | 0.014*                                                                                                                                                                                                                             |
| 0.3343 (5)   | 0.0119 (8)                                                                                                                                                                                                                         |
| 0.264 (6)    | 0.014*                                                                                                                                                                                                                             |
| 0.2963 (6)   | 0.0111 (10)                                                                                                                                                                                                                        |
| 0.2357 (6)   | 0.0114 (9)                                                                                                                                                                                                                         |
| 0.2482 (6)   | 0.0095 (9)                                                                                                                                                                                                                         |
| 0.2883       | 0.011*                                                                                                                                                                                                                             |
| 0.2007 (6)   | 0.0104 (10)                                                                                                                                                                                                                        |
| 0.1452 (7)   | 0.0110 (9)                                                                                                                                                                                                                         |
| 0.1252 (6)   | 0.0119 (9)                                                                                                                                                                                                                         |
| 0.1712 (6)   | 0.0122 (10)                                                                                                                                                                                                                        |
| 0.1583       | 0.015*                                                                                                                                                                                                                             |
| 0.2777 (5)   | 0.0151 (8)                                                                                                                                                                                                                         |
| 0.334 (7)    | 0.023*                                                                                                                                                                                                                             |
| 0.325 (7)    | 0.023*                                                                                                                                                                                                                             |
| 0.15644 (16) | 0.0126 (2)                                                                                                                                                                                                                         |
| 0.0667 (4)   | 0.0114 (7)                                                                                                                                                                                                                         |
| 0.0090 (4)   | 0.0131 (7)                                                                                                                                                                                                                         |
| 0.3124 (4)   | 0.0103 (7)                                                                                                                                                                                                                         |
|              | 0.011(                                                                                                                                                                                                                             |
|              | 0.2963 (6)<br>0.2963 (6)<br>0.2357 (6)<br>0.2482 (6)<br>0.2883<br>0.2007 (6)<br>0.1452 (7)<br>0.1252 (6)<br>0.1712 (6)<br>0.1583<br>0.2777 (5)<br>0.334 (7)<br>0.325 (7)<br>0.15644 (16)<br>0.0667 (4)<br>0.0090 (4)<br>0.3124 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|    | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-----------------|-----------------|--------------|--------------|--------------|
| 01 | 0.0097 (15) | 0.0054 (14)     | 0.0148 (16)     | -0.0020 (12) | -0.0002 (14) | 0.0012 (13)  |
| O2 | 0.0099 (15) | 0.0100 (14)     | 0.0225 (16)     | -0.0009 (13) | -0.0038 (17) | 0.0047 (16)  |
| O3 | 0.0085 (16) | 0.0089 (15)     | 0.0147 (17)     | -0.0007 (13) | -0.0049 (14) | 0.0025 (13)  |
| O4 | 0.0091 (16) | 0.0054 (15)     | 0.0220 (16)     | -0.0008 (12) | -0.0041 (14) | 0.0013 (14)  |
| N1 | 0.0069 (17) | 0.0144 (18)     | 0.007 (2)       | -0.0003 (15) | -0.0011 (16) | -0.0039 (17) |
| N2 | 0.0061 (18) | 0.0097 (18)     | 0.020 (2)       | 0.0008 (15)  | -0.0016 (17) | -0.0005 (17) |
| C1 | 0.017 (2)   | 0.009 (2)       | 0.005 (2)       | 0.0016 (18)  | 0.003 (2)    | 0.0009 (19)  |
| C2 | 0.0069 (19) | 0.0091 (19)     | 0.0063 (18)     | 0.0001 (16)  | -0.001 (2)   | -0.004 (2)   |
| C3 | 0.016 (2)   | 0.010 (2)       | 0.007 (2)       | 0.0042 (17)  | -0.002 (2)   | -0.0006 (19) |
| C4 | 0.007 (2)   | 0.008 (2)       | 0.011 (2)       | -0.0006 (17) | 0.002 (2)    | -0.0016 (19) |
| C5 | 0.008 (2)   | 0.014 (2)       | 0.007 (2)       | -0.0008 (18) | 0.0025 (19)  | -0.0014 (19) |
| C6 | 0.018 (2)   | 0.0026 (19)     | 0.008 (2)       | 0.0024 (18)  | -0.0033 (19) | 0.0021 (17)  |
| C7 | 0.016 (2)   | 0.0049 (18)     | 0.009 (2)       | -0.0022 (18) | -0.0016 (19) | -0.0014 (17) |
| O5 | 0.0089 (17) | 0.0131 (15)     | 0.0209 (18)     | 0.0001 (13)  | 0.0026 (14)  | 0.0016 (14)  |
| O6 | 0.0079 (17) | 0.0131 (16)     | 0.024 (2)       | 0.0022 (13)  | 0.0060 (14)  | -0.0018 (14) |
| O7 | 0.0101 (16) | 0.0121 (15)     | 0.024 (2)       | 0.0006 (13)  | 0.0031 (15)  | -0.0022 (14) |
| O8 | 0.0095 (16) | 0.0114 (16)     | 0.0211 (17)     | 0.0021 (13)  | -0.0007 (14) | -0.0036 (14) |
| N3 | 0.011 (2)   | 0.011 (2)       | 0.014 (2)       | 0.0029 (18)  | -0.0010 (18) | -0.0016 (18) |
| N4 | 0.0106 (19) | 0.0060 (17)     | 0.019 (2)       | 0.0033 (16)  | -0.0024 (17) | -0.0059 (17) |

| C8  | 0.012 (2)   | 0.018 (2)   | 0.003 (2)   | 0.0012 (19)  | -0.0009 (18) | 0.0013 (19)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C9  | 0.017 (3)   | 0.0084 (19) | 0.0084 (19) | 0.0011 (19)  | -0.003 (2)   | 0.0002 (17)  |
| C10 | 0.014 (2)   | 0.005 (2)   | 0.009 (2)   | 0.0044 (18)  | 0.003 (2)    | 0.0011 (18)  |
| C11 | 0.009 (2)   | 0.016 (2)   | 0.006 (2)   | 0.0005 (19)  | 0.0024 (17)  | 0.0025 (18)  |
| C12 | 0.014 (2)   | 0.0065 (19) | 0.013 (2)   | 0.0022 (17)  | -0.005 (2)   | -0.001 (2)   |
| C13 | 0.013 (2)   | 0.012 (2)   | 0.011 (2)   | 0.0060 (18)  | -0.0003 (19) | -0.005 (2)   |
| C14 | 0.013 (2)   | 0.016 (2)   | 0.008 (2)   | -0.0017 (18) | 0.000 (2)    | 0.001 (2)    |
| O9  | 0.0136 (18) | 0.0108 (17) | 0.0209 (19) | 0.0038 (14)  | 0.0024 (15)  | 0.0002 (14)  |
| Cl1 | 0.0136 (5)  | 0.0122 (5)  | 0.0120 (5)  | -0.0006 (5)  | 0.0010 (5)   | 0.0001 (5)   |
| O10 | 0.0094 (16) | 0.0089 (15) | 0.0158 (15) | 0.0011 (13)  | 0.0038 (14)  | 0.0029 (13)  |
| O11 | 0.0144 (17) | 0.0134 (16) | 0.0114 (15) | 0.0056 (14)  | -0.0025 (14) | 0.0017 (13)  |
| O12 | 0.0122 (16) | 0.0094 (15) | 0.0095 (15) | -0.0040 (13) | 0.0011 (13)  | -0.0020 (13) |
| O13 | 0.0110 (16) | 0.0074 (14) | 0.0164 (16) | -0.0070 (13) | 0.0039 (14)  | -0.0035 (13) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| O1—C1      | 1.227 (5)  | 07—Н7О     | 0.843 (19) |
|------------|------------|------------|------------|
| O2—C4      | 1.372 (5)  | O8—C13     | 1.362 (5)  |
| O2—H2O     | 0.826 (19) | O8—H8O     | 0.830 (19) |
| O3—C5      | 1.384 (5)  | N3—N4      | 1.420 (5)  |
| О3—НЗО     | 0.82 (2)   | N3—H3A     | 0.892 (19) |
| O4—C6      | 1.376 (5)  | N3—H3B     | 0.911 (19) |
| O4—H4O     | 0.839 (19) | N3—H3C     | 0.919 (19) |
| N1—N2      | 1.420 (5)  | N4—C8      | 1.377 (6)  |
| N1—H1A     | 0.880 (19) | N4—H4N     | 0.867 (19) |
| N1—H1B     | 0.891 (19) | C8—C9      | 1.467 (6)  |
| N2—C1      | 1.358 (5)  | C9—C14     | 1.385 (6)  |
| N2—H2N     | 0.863 (19) | C9—C10     | 1.402 (6)  |
| C1—C2      | 1.488 (6)  | C10-C11    | 1.393 (6)  |
| C2—C3      | 1.381 (6)  | C10—H10    | 0.9500     |
| C2—C7      | 1.401 (6)  | C11—C12    | 1.376 (6)  |
| C3—C4      | 1.384 (6)  | C12—C13    | 1.375 (6)  |
| С3—Н3      | 0.9500     | C13—C14    | 1.393 (6)  |
| C4—C5      | 1.389 (6)  | C14—H14    | 0.9500     |
| C5—C6      | 1.382 (6)  | О9—Н9А     | 0.85 (2)   |
| C6—C7      | 1.379 (6)  | О9—Н9В     | 0.83 (2)   |
| С7—Н7      | 0.9500     | Cl1—O13    | 1.455 (3)  |
| O5—C8      | 1.226 (5)  | Cl1—O10    | 1.480 (3)  |
| O6—C11     | 1.368 (5)  | Cl1—O11    | 1.489 (3)  |
| О6—Н6О     | 0.82 (2)   | Cl1—O12    | 1.492 (3)  |
| O7—C12     | 1.382 (5)  |            |            |
| C4—O2—H2O  | 105 (3)    | H3A—N3—H3B | 113 (4)    |
| С5—О3—НЗО  | 115 (3)    | N4—N3—H3C  | 114 (3)    |
| С6—О4—Н4О  | 112 (3)    | H3A—N3—H3C | 113 (4)    |
| N2—N1—H1A  | 117 (3)    | H3B—N3—H3C | 104 (4)    |
| N2—N1—H1B  | 104 (3)    | C8—N4—N3   | 116.3 (4)  |
| H1A—N1—H1B | 107 (4)    | C8—N4—H4N  | 121 (3)    |
| C1—N2—N1   | 116.8 (3)  | N3—N4—H4N  | 110 (3)    |
| C1—N2—H2N  | 124 (3)    | O5—C8—N4   | 118.3 (4)  |

| N1—N2—H2N  | 115 (3)   | O5—C8—C9    | 125.2 (4)   |
|------------|-----------|-------------|-------------|
| O1—C1—N2   | 120.9 (4) | N4—C8—C9    | 116.3 (4)   |
| O1—C1—C2   | 124.5 (3) | C14—C9—C10  | 120.1 (4)   |
| N2-C1-C2   | 114.6 (4) | C14—C9—C8   | 117.6 (4)   |
| C3—C2—C7   | 119.8 (4) | C10—C9—C8   | 122.2 (4)   |
| C3—C2—C1   | 121.2 (4) | C11—C10—C9  | 118.9 (4)   |
| C7—C2—C1   | 119.0 (4) | C11-C10-H10 | 120.6       |
| C2—C3—C4   | 120.4 (4) | С9—С10—Н10  | 120.6       |
| С2—С3—Н3   | 119.8     | O6-C11-C12  | 114.9 (4)   |
| С4—С3—Н3   | 119.8     | O6-C11-C10  | 124.6 (4)   |
| O2—C4—C3   | 120.8 (4) | C12-C11-C10 | 120.4 (4)   |
| O2—C4—C5   | 119.5 (4) | C13—C12—C11 | 120.7 (4)   |
| C3—C4—C5   | 119.8 (4) | C13—C12—O7  | 118.2 (4)   |
| C6—C5—O3   | 121.8 (4) | C11—C12—O7  | 121.1 (4)   |
| C6—C5—C4   | 119.8 (4) | O8—C13—C12  | 117.0 (4)   |
| O3—C5—C4   | 118.4 (4) | O8—C13—C14  | 123.2 (4)   |
| O4—C6—C7   | 122.5 (4) | C12—C13—C14 | 119.7 (4)   |
| O4—C6—C5   | 116.7 (4) | C9—C14—C13  | 120.0 (4)   |
| C7—C6—C5   | 120.8 (4) | С9—С14—Н14  | 120.0       |
| C6—C7—C2   | 119.3 (4) | C13—C14—H14 | 120.0       |
| С6—С7—Н7   | 120.3     | Н9А—О9—Н9В  | 108 (5)     |
| С2—С7—Н7   | 120.3     | O13—Cl1—O10 | 112.02 (17) |
| С11—О6—Н6О | 119 (3)   | O13-Cl1-O11 | 110.14 (18) |
| С12—07—Н7О | 102 (3)   | O10-Cl1-O11 | 108.30 (18) |
| С13—О8—Н8О | 111 (3)   | O13-Cl1-O12 | 108.18 (18) |
| N4—N3—H3A  | 102 (3)   | O10-Cl1-O12 | 109.52 (18) |
| N4—N3—H3B  | 110 (3)   | O11—Cl1—O12 | 108.63 (17) |

### Hydrogen-bond geometry (Å, °)

| N1—H1A···O12 <sup>i</sup> $0.88(2)$ $1.95(3)$ $2.769(5)$ $155(4)$ N1—H1B···O11 <sup>ii</sup> $0.89(2)$ $1.99(3)$ $2.835(5)$ $159(4)$ N2—H2N··O13 <sup>iii</sup> $0.86(2)$ $1.92(2)$ $2.783(4)$ $175(4)$ O2—H2O··O10 <sup>iii</sup> $0.83(2)$ $1.96(2)$ $2.782(4)$ $173(5)$ N3—H3A··O3 <sup>iv</sup> $0.89(2)$ $2.10(2)$ $2.958(5)$ $161(4)$ N3—H3B··O1 $0.91(2)$ $1.90(2)$ $2.788(5)$ $163(4)$ N3—H3C··O9 <sup>ii</sup> $0.92(2)$ $1.95(2)$ $2.833(5)$ $160(4)$ O3—H3O··O4 $0.82(2)$ $2.39(5)$ $2.732(4)$ $106(4)$ O3—H3O··O10 <sup>v</sup> $0.82(2)$ $1.96(3)$ $2.720(4)$ $153(4)$ N4—H4N··O2 <sup>iv</sup> $0.87(2)$ $2.01(3)$ $2.811(5)$ $154(4)$ O4—H4O··O9 $0.84(2)$ $2.02(2)$ $2.854(4)$ $171(5)$ O6—H6O··O12 <sup>vi</sup> $0.84(2)$ $2.15(4)$ $2.667(4)$ $119(4)$ | D—H···A                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|--------------|--------------|---------|
| N1—H1B··O11 <sup>ii</sup> $0.89(2)$ $1.99(3)$ $2.835(5)$ $159(4)$ N2—H2N··O13 <sup>iii</sup> $0.86(2)$ $1.92(2)$ $2.783(4)$ $175(4)$ O2—H2O··O10 <sup>iii</sup> $0.83(2)$ $1.96(2)$ $2.782(4)$ $173(5)$ N3—H3A··O3 <sup>iv</sup> $0.89(2)$ $2.10(2)$ $2.958(5)$ $161(4)$ N3—H3B··O1 $0.91(2)$ $1.90(2)$ $2.788(5)$ $163(4)$ N3—H3C··O9 <sup>ii</sup> $0.92(2)$ $1.95(2)$ $2.833(5)$ $160(4)$ O3—H3O··O4 $0.82(2)$ $2.39(5)$ $2.732(4)$ $106(4)$ O3—H3O··O10 <sup>v</sup> $0.87(2)$ $2.01(3)$ $2.811(5)$ $154(4)$ O4—H4O··O9 $0.84(2)$ $2.02(2)$ $2.854(4)$ $171(5)$ O6—H6O··O12 <sup>vi</sup> $0.82(2)$ $1.81(3)$ $2.598(4)$ $160(5)$ O7—H7O··O6 $0.84(2)$ $2.15(4)$ $2.667(4)$ $119(4)$                                                                                  | N1—H1A···O12 <sup>i</sup>    | 0.88 (2)    | 1.95 (3)     | 2.769 (5)    | 155 (4) |
| N2—H2N···O13 <sup>iii</sup> $0.86(2)$ $1.92(2)$ $2.783(4)$ $175(4)$ O2—H2O···O10 <sup>iii</sup> $0.83(2)$ $1.96(2)$ $2.782(4)$ $173(5)$ N3—H3A···O3 <sup>iv</sup> $0.89(2)$ $2.10(2)$ $2.958(5)$ $161(4)$ N3—H3B···O1 $0.91(2)$ $1.90(2)$ $2.788(5)$ $163(4)$ N3—H3C···O9 <sup>ii</sup> $0.92(2)$ $1.95(2)$ $2.833(5)$ $160(4)$ O3—H3O···O4 $0.82(2)$ $2.39(5)$ $2.732(4)$ $106(4)$ O3—H3O···O10 <sup>v</sup> $0.82(2)$ $1.96(3)$ $2.720(4)$ $153(4)$ N4—H4N···O2 <sup>iv</sup> $0.87(2)$ $2.01(3)$ $2.811(5)$ $154(4)$ O4—H4O···O9 $0.84(2)$ $2.02(2)$ $2.854(4)$ $171(5)$ O6—H6O···O12 <sup>vi</sup> $0.82(2)$ $1.81(3)$ $2.598(4)$ $160(5)$ O7—H7O···O6 $0.84(2)$ $2.15(4)$ $2.667(4)$ $119(4)$                                                                        | N1—H1B···O11 <sup>ii</sup>   | 0.89 (2)    | 1.99 (3)     | 2.835 (5)    | 159 (4) |
| $O2-H2O\cdotsO10^{iii}$ $0.83(2)$ $1.96(2)$ $2.782(4)$ $173(5)$ $N3-H3A\cdotsO3^{iv}$ $0.89(2)$ $2.10(2)$ $2.958(5)$ $161(4)$ $N3-H3B\cdotsO1$ $0.91(2)$ $1.90(2)$ $2.788(5)$ $163(4)$ $N3-H3C\cdotsO9^{ii}$ $0.92(2)$ $1.95(2)$ $2.833(5)$ $160(4)$ $O3-H3O\cdotsO4$ $0.82(2)$ $2.39(5)$ $2.732(4)$ $106(4)$ $O3-H3O\cdotsO10^{v}$ $0.82(2)$ $1.96(3)$ $2.720(4)$ $153(4)$ $N4-H4N\cdotsO2^{iv}$ $0.87(2)$ $2.01(3)$ $2.811(5)$ $154(4)$ $O4-H4O\cdotsO9$ $0.84(2)$ $2.02(2)$ $2.854(4)$ $171(5)$ $O6-H6O\cdotsO12^{vi}$ $0.82(2)$ $1.81(3)$ $2.598(4)$ $160(5)$ $O7-H7O\cdotsO6$ $0.84(2)$ $2.15(4)$ $2.667(4)$ $119(4)$                                                                                                                                                | N2—H2N····O13 <sup>iii</sup> | 0.86 (2)    | 1.92 (2)     | 2.783 (4)    | 175 (4) |
| N3—H3A···O3 <sup>iv</sup> $0.89 (2)$ $2.10 (2)$ $2.958 (5)$ $161 (4)$ N3—H3B··O1 $0.91 (2)$ $1.90 (2)$ $2.788 (5)$ $163 (4)$ N3—H3C···O9 <sup>ii</sup> $0.92 (2)$ $1.95 (2)$ $2.833 (5)$ $160 (4)$ O3—H3O···O4 $0.82 (2)$ $2.39 (5)$ $2.732 (4)$ $106 (4)$ O3—H3O···O10 <sup>v</sup> $0.82 (2)$ $1.96 (3)$ $2.720 (4)$ $153 (4)$ N4—H4N···O2 <sup>iv</sup> $0.87 (2)$ $2.01 (3)$ $2.811 (5)$ $154 (4)$ O4—H4O···O9 $0.84 (2)$ $2.02 (2)$ $2.854 (4)$ $171 (5)$ O6—H6O···O12 <sup>vi</sup> $0.82 (2)$ $1.81 (3)$ $2.598 (4)$ $160 (5)$ O7—H7O···O6 $0.84 (2)$ $2.15 (4)$ $2.667 (4)$ $119 (4)$                                                                                                                                                                             | O2—H2O···O10 <sup>iii</sup>  | 0.83 (2)    | 1.96 (2)     | 2.782 (4)    | 173 (5) |
| N3—H3B···O1 $0.91 (2)$ $1.90 (2)$ $2.788 (5)$ $163 (4)$ N3—H3C···O9 <sup>ii</sup> $0.92 (2)$ $1.95 (2)$ $2.833 (5)$ $160 (4)$ O3—H3O···O4 $0.82 (2)$ $2.39 (5)$ $2.732 (4)$ $106 (4)$ O3—H3O···O10 <sup>V</sup> $0.82 (2)$ $1.96 (3)$ $2.720 (4)$ $153 (4)$ N4—H4N···O2 <sup>iv</sup> $0.87 (2)$ $2.01 (3)$ $2.811 (5)$ $154 (4)$ O4—H4O···O9 $0.84 (2)$ $2.02 (2)$ $2.854 (4)$ $171 (5)$ O6—H6O···O12 <sup>vi</sup> $0.82 (2)$ $1.81 (3)$ $2.598 (4)$ $160 (5)$ O7—H7O··O6 $0.84 (2)$ $2.15 (4)$ $2.667 (4)$ $119 (4)$                                                                                                                                                                                                                                                   | N3—H3A···O3 <sup>iv</sup>    | 0.89 (2)    | 2.10 (2)     | 2.958 (5)    | 161 (4) |
| N3—H3C···O9 <sup>ii</sup> $0.92 (2)$ $1.95 (2)$ $2.833 (5)$ $160 (4)$ O3—H3O···O4 $0.82 (2)$ $2.39 (5)$ $2.732 (4)$ $106 (4)$ O3—H3O···O10 <sup>v</sup> $0.82 (2)$ $1.96 (3)$ $2.720 (4)$ $153 (4)$ N4—H4N···O2 <sup>iv</sup> $0.87 (2)$ $2.01 (3)$ $2.811 (5)$ $154 (4)$ O4—H4O···O9 $0.84 (2)$ $2.02 (2)$ $2.854 (4)$ $171 (5)$ O6—H6O···O12 <sup>vi</sup> $0.82 (2)$ $1.81 (3)$ $2.598 (4)$ $160 (5)$ O7—H7O···O6 $0.84 (2)$ $2.15 (4)$ $2.667 (4)$ $119 (4)$                                                                                                                                                                                                                                                                                                          | N3—H3B…O1                    | 0.91 (2)    | 1.90 (2)     | 2.788 (5)    | 163 (4) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N3—H3C····O9 <sup>ii</sup>   | 0.92 (2)    | 1.95 (2)     | 2.833 (5)    | 160 (4) |
| $O3-H3O\cdots O10^{v}$ $0.82$ (2) $1.96$ (3) $2.720$ (4) $153$ (4) $N4-H4N\cdots O2^{iv}$ $0.87$ (2) $2.01$ (3) $2.811$ (5) $154$ (4) $O4-H4O\cdots O9$ $0.84$ (2) $2.02$ (2) $2.854$ (4) $171$ (5) $O6-H6O\cdots O12^{vi}$ $0.82$ (2) $1.81$ (3) $2.598$ (4) $160$ (5) $O7-H7O\cdots O6$ $0.84$ (2) $2.15$ (4) $2.667$ (4) $119$ (4)                                                                                                                                                                                                                                                                                                                                                                                                                                     | O3—H3O…O4                    | 0.82 (2)    | 2.39 (5)     | 2.732 (4)    | 106 (4) |
| N4—H4N···O2 <sup>iv</sup> $0.87 (2)$ $2.01 (3)$ $2.811 (5)$ $154 (4)$ O4—H4O···O9 $0.84 (2)$ $2.02 (2)$ $2.854 (4)$ $171 (5)$ O6—H6O···O12 <sup>vi</sup> $0.82 (2)$ $1.81 (3)$ $2.598 (4)$ $160 (5)$ O7—H7O··O6 $0.84 (2)$ $2.15 (4)$ $2.667 (4)$ $119 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O3—H3O…O10 <sup>v</sup>      | 0.82 (2)    | 1.96 (3)     | 2.720 (4)    | 153 (4) |
| O4—H4O···O90.84 (2)2.02 (2)2.854 (4)171 (5)O6—H6O···O12 <sup>vi</sup> 0.82 (2)1.81 (3)2.598 (4)160 (5)O7—H7O···O60.84 (2)2.15 (4)2.667 (4)119 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N4—H4N····O2 <sup>iv</sup>   | 0.87 (2)    | 2.01 (3)     | 2.811 (5)    | 154 (4) |
| O6—H6O···O12 <sup>vi</sup> 0.82 (2)1.81 (3)2.598 (4)160 (5)O7—H7O···O60.84 (2)2.15 (4)2.667 (4)119 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O4—H4O…O9                    | 0.84 (2)    | 2.02 (2)     | 2.854 (4)    | 171 (5) |
| O7—H7O···O6 0.84 (2) 2.15 (4) 2.667 (4) 119 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O6—H6O…O12 <sup>vi</sup>     | 0.82 (2)    | 1.81 (3)     | 2.598 (4)    | 160 (5) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07—Н7О…О6                    | 0.84 (2)    | 2.15 (4)     | 2.667 (4)    | 119 (4) |
| $O7-H7O\cdots O4^{vi}$ 0.84 (2) 2.31 (3) 3.085 (4) 154 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O7—H7O···O4 <sup>vi</sup>    | 0.84 (2)    | 2.31 (3)     | 3.085 (4)    | 154 (4) |
| O8—H8O···O11         0.83 (2)         1.99 (2)         2.794 (4)         164 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O8—H8O…O11                   | 0.83 (2)    | 1.99 (2)     | 2.794 (4)    | 164 (5) |
| O8—H8O···O13       0.83 (2)       2.34 (4)       2.892 (4)       125 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O8—H8O…O13                   | 0.83 (2)    | 2.34 (4)     | 2.892 (4)    | 125 (4) |

| О9—Н9А…О12                 | 0.85 (2) | 2.14 (3) | 2.875 (4) | 145 (5) |
|----------------------------|----------|----------|-----------|---------|
| O9—H9A…O1 <sup>ii</sup>    | 0.85 (2) | 2.51 (5) | 3.036 (4) | 121 (4) |
| О9—Н9В…О5                  | 0.83 (2) | 2.03 (3) | 2.794 (4) | 152 (5) |
| C3—H3···O13 <sup>iii</sup> | 0.95     | 2.39     | 3.079 (5) | 129.    |
| С7—Н7…О9                   | 0.95     | 2.57     | 3.291 (5) | 133.    |
|                            |          |          |           |         |

Symmetry codes: (i) -x+1, -y+1, z-1/2; (ii) -x+1, -y+1, z+1/2; (iii) x, y+1, z; (iv) x-1/2, -y+3/2, z; (v) -x+3/2, y+1/2, z+1/2; (vi) x-1/2, -y+1/2, z.



Fig. 1



